S-nitrosation of mitochondrial connexin 43 regulates mitochondrial function
نویسندگان
چکیده
منابع مشابه
Connexin 43 impacts on mitochondrial potassium uptake
In cardiomyocytes, connexin 43 (Cx43) forms gap junctions and unopposed hemichannels at the plasma membrane, but the protein is also present at the inner membrane of subsarcolemmal mitochondria (SSM). Both inhibition and genetic ablation of Cx43 reduce ADP-stimulated complex 1 respiration. Since mitochondrial potassium influx impacts on oxygen consumption, we investigated whether or not inhibit...
متن کاملDirect evidence for S-nitrosation of mitochondrial complex I.
NO* (nitric oxide) is a pleiotropic signalling molecule, with many of its effects on cell function being elicited at the level of the mitochondrion. In addition to the well-characterized binding of NO* to the Cu(B)/haem-a3 site in mitochondrial complex IV, it has been proposed by several laboratories that complex I can be inhibited by S-nitrosation of a cysteine. However, direct molecular evide...
متن کاملCCN6 regulates mitochondrial function.
Despite established links of CCN6, or Wnt induced signaling protein-3 (WISP3), with progressive pseudo rheumatoid dysplasia, functional characterization of CCN6 remains incomplete. In light of the documented negative correlation between accumulation of reactive oxygen species (ROS) and CCN6 expression, we investigated whether CCN6 regulates ROS accumulation through its influence on mitochondria...
متن کاملMitochondrial connexin 43 impacts on respiratory complex I activity and mitochondrial oxygen consumption
Connexin 43 (Cx43) is present at the sarcolemma and the inner membrane of cardiomyocyte subsarcolemmal mitochondria (SSM). Lack or inhibition of mitochondrial Cx43 is associated with reduced mitochondrial potassium influx, which might affect mitochondrial respiration. Therefore, we analysed the importance of mitochondrial Cx43 for oxygen consumption. Acute inhibition of Cx43 in rat left ventric...
متن کاملIdentification of S-nitrosated mitochondrial proteins by S-nitrosothiol difference in gel electrophoresis (SNO-DIGE): implications for the regulation of mitochondrial function by reversible S-nitrosation
The S-nitrosation of mitochondrial proteins as a consequence of NO metabolism is of physiological and pathological significance. We previously developed a MitoSNO (mitochondria-targeted S-nitrosothiol) that selectively S-nitrosates mitochondrial proteins. To identify these S-nitrosated proteins, here we have developed a selective proteomic methodology, SNO-DIGE (S-nitrosothiol difference in gel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Basic Research in Cardiology
سال: 2014
ISSN: 0300-8428,1435-1803
DOI: 10.1007/s00395-014-0433-x